Evolution of Massive Black Hole Binaries
نویسندگان
چکیده
We present the results of large-scale N -body simulations of the stellar-dynamical evolution of massive black hole binaries at the center of spherical galaxies. We focus on the dependence of the hardening rate on the relaxation timescale of the parent galaxy. A simple theoretical argument predicts that a binary black hole creates a “loss cone” around it. Once the stars in the loss cone are depleted, the hardening rate is determined by the rate at which field stars diffuse into the loss cone. Therefore the hardening timescale becomes proportional to the relaxation timescale. RecentN -body simulations, however, have failed to confirm this theory and various explanations have been proposed. By performing simulations with sufficiently large N (up to 10) for sufficiently long time, we found that the hardening rate does indeed depend on N . Our result is consistent with the simple theoretical prediction that the hardening timescale is proportional to the relaxation timescale. This dependence implies that massive black hole binaries are unlikely to merge within a Hubble time through interaction with field stars and gravitational wave radiation alone. Subject headings: black hole physics — galaxies:interactions — galaxies:nuclei — methods: N-body simulations—stellar dynamics
منابع مشابه
Forty Years of X-Ray Binaries
In 2012 it was forty years ago that the discovery of the first X-ray binary Centaurus X-3 became known. That same year it was discovered that apart from the High-Mass X-ray Binaries (HMXBs) there are also Low-Mass X-ray Binaries (LMXBs), and that Cygnus X-1 is most probably a black hole. By 1975 also the new class of Be/X-ray binaries was discovered. After this it took 28 years before ESAs INTE...
متن کاملOn the formation and evolution of black-hole binaries
We present the results of a systematic study of the formation and evolution of binaries containing black holes and normal-star companions with a wide range of masses. We first reexamine the standard formation scenario for close black-hole binaries, where the progenitor system, a binary with at least one massive component, experienced a common-envelope phase and where the spiral-in of the compan...
متن کاملLong Term Evolution of Massive Black Hole Binaries
The long-term evolution of massive black hole binaries at the centers of galaxies is studied in a variety of physical regimes, with the aim of resolving the “final parsec problem,” i.e. how black hole binaries manage to shrink to separations at which emission of gravity waves becomes efficient. A binary ejects stars by the gravitational slingshot and carves out a loss cone in the host galaxy. C...
متن کاملEvolution of Black Holes in the Galaxy
In this article we consider the formation and evolution of black holes, especially those in binary stars where radiation from the matter falling on them can be seen. We consider a number of effects introduced by some of us, which are not traditionally included in binary evolution of massive stars. These are (i) hypercritical accretion, which allows neutron stars to accrete enough matter to coll...
متن کاملar X iv : a st ro - p h / 99 10 06 1 v 2 3 0 N ov 1 99 9 Black hole mergers in the universe
Mergers of black-hole binaries are expected to release large amounts of energy in the form of gravitational radiation. However, binary evolution models predict merger rates too low to be of observational interest. In this paper we explore the possibility that black holes become members of close binaries via dynamical interactions with other stars in dense stellar systems. In star clusters, blac...
متن کامل